Chemistry 232 Organic Chemistry II
Fall 2013

INSTRUCTOR: Dr. Justin K. Wyatt
OFFICE: 310 School of Science and Math Building (SSMB)
PHONE: (843) 953-6587
EMAIL: wyattj@cofc.edu - This is the best way to get in touch with me!

LECTURE: TR 9:25 – 10:40 am (section 01), RHSC Room 317

OFFICE HOURS: M 11:30-12:30 pm, T 2-3 pm, R 1:30-2:30 pm, or by appointment.

GRADING POLICY

EXAMS:
- Midterm I Thursday September 12th
- Midterm II Thursday October 3rd
- Midterm III Thursday October 31st
- Midterm IV Thursday November 21st
- ACS Final* Saturday December 7th (8:00-10:00 am)

*This exam is normalized because it is a standardized exam. (Similar to the standardized SAT, MCAT, and DAT exams.)

QUizzes: Every Thursday, that there is no Exam (based on the schedule above), there will be a 10 pt quiz (10 total) that will focus on material from the last quiz or exam. However, all material that has been discussed during the semester is fair game because it all grows on itself.

TOTAL GRADE: Your grade is based on straight points and so each exam is worth 1/6th of your grade (for a total of 500 pts possible out of 600 pts) and your quiz total will also be 1/6th of your grade (for a total of 100 pts possible out of 600 pts). **No late or make-up exam or quiz will be given.**

The ACS final can replace your lowest midterm exam grade if doing so will improve your average if (and only if): 1. You personally have taken all four midterm exams, and 2. The entire class has a response rate of greater than 75% for the ONLINE COURSE EVALUATIONS.

GRADE ASSIGNMENTS: I do not round grades (ie. a 69.9% is still a 69%...therefore, still a C-).

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
<th>Letter</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100-94</td>
<td></td>
</tr>
<tr>
<td>A-</td>
<td>93-90</td>
<td></td>
</tr>
<tr>
<td>B+</td>
<td>89-86</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>85-82</td>
<td></td>
</tr>
<tr>
<td>B-</td>
<td>81-78</td>
<td></td>
</tr>
<tr>
<td>C+</td>
<td>77-74</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>73-70</td>
<td></td>
</tr>
<tr>
<td>C-</td>
<td>69-66</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>65-62</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>61 and below</td>
<td></td>
</tr>
</tbody>
</table>
CHEATING: If I suspect that you are cheating, I will take you to the honor board and let them decide your fate. Cheating on even one question is so stupid! Do you really want to risk your entire career over a few little points? REALLY?

College of Charleston Honor Code and Academic Integrity

Lying, cheating, attempted cheating, and plagiarism are violations of our Honor Code that, when identified, are investigated. Each incident will be examined to determine the degree of deception involved.

Incidents where the instructor determines the student’s actions are related more to a misunderstanding will be handled by the instructor. A written intervention designed to help prevent the student from repeating the error will be given to the student. The intervention, submitted by form and signed both by the instructor and the student, will be forwarded to the Dean of Students and placed in the student’s file.

Cases of suspected academic dishonesty will be reported directly by the instructor and/or others having knowledge of the incident to the Dean of Students. A student found responsible by the Honor Board for academic dishonesty will receive a XF in the course, indicating failure of the course due to academic dishonesty. This grade will appear on the student’s transcript for two years after which the student may petition for the X to be expunged. The student may also be placed on disciplinary probation, suspended (temporary removal) or expelled (permanent removal) from the College by the Honor Board.

Students should be aware that unauthorized collaboration -- working together without permission -- is a form of cheating. Unless the instructor specifies that students can work together on an assignment, quiz and/or test, no collaboration during the completion of the assignment is permitted. Other forms of cheating include possessing or using an unauthorized study aid (which could include accessing information via a cell phone or computer), copying from others’ exams, fabricating data, and giving unauthorized assistance.

Research conducted and/or papers written for other classes cannot be used in whole or in part for any assignment in this class without obtaining prior permission from the instructor.

Students can find the complete Honor Code and all related processes in the Student Handbook at http://studentaffairs.cofc.edu/honor-system/studenthandbook/index.php

WHAT DO I EXPECT YOU TO KNOW?!

- All the reactions from CHEM 231.
- All the spectroscopy from CHEM 231/231L.

COURSE OUTLINE

Chapter 14: Ethers and Epoxides; Thiols and Sulfides.
Chapter 16: NMR Spectroscopy.
Chapter 17: Conjugated Pi-Systems and Pericyclic Reactions.
Chapter 18: Aromatic Compounds.
Chapter 19: Aromatic Substitution Reactions.
Chapter 20: Aldehydes and Ketones.
Chapter 21: Carboxylic acids and Their Derivatives.
Chapter 23: Amines.
Chapter 24: Carbohydrates.
HELPFUL HINTS

1. Do as many problems as you can from our textbook, other textbooks, and other resources.
2. Go to SI.
3. Go to Office Hours.
4. Do more problems.
5. Get a tutor if you want one (sooner rather than later).
6. Overall, do problems and get help if you need it.

LEARNING OBJECTIVES

The successful student is expected to:

- Demonstrate competency with all of the learning objectives previously stated for both CHEM 231 and 231L
- Use IUPAC and common nomenclature for ethers, aromatics, carbonyl containing compounds, and amines
- Develop and evaluate multistep retrosynthetic schemes
- Draw and interpret electrophilic and nucleophilic aromatic substitution, acyl nucleophilic substitution, Diels-Alder cycloaddition, nucleophilic addition to aldehyde or ketone, enol and enolate, non-electrophilic aromatic substitution, and rearrangement type mechanisms
- Predict reaction outcomes, associated reagents, or associated starting materials for the above listed reactions, and those from CHEM 231
- Integrate knowledge and principles about organic reactions and reactivities to make reasonable predictions about likely outcomes when presented with related chemistry