Office Hours: As announced in the first laboratory period by your instructor.

Course Policies: Instructors in all sections will follow the policies described in the laboratory manual for this course. The items below are of particular note.

- **Attendance Policy** – Attendance to your section of scheduled lab is required. The grade of "WA" will not be used in this course, but students who miss quizzes, labs or the final will be given a grade of "0" for the associated evaluations. The grade of "X" will be used for any student who misses the final exam. You are responsible for learning the required material and performing the required experiments. If you miss a lab without prior approval from your instructor you will not be allowed to make up the missed lab. However, if you have a planned absence (due to your official representation of the College off campus or for another reasonable cause) please let your instructor know well in advance and we will work with you to try to make an accommodation that will allow you to make up the missed lab. You may not make up labs due to illness or unscheduled absences. When your final course grade is calculated, your lowest grade in each category will be dropped. If you miss a lab, grades associated with that one missed lab will become your dropped grade. If you miss a second lab, grades of "0" will be averaged in to determine your course grade.

- **Required Texts**
 - HONS293L or CHEM 232L – Fall 2013 lab manual including forms, spectral data and reports contained within
 - The lecture text for the associated lecture course, CHEM 232 or HONS 293
 - Departmental Website / OAKS course pages
 - A composition notebook for in-lab recording
 - It is recommended that you use your CHEM 231L or HONS 192L lab manual as necessary to review common laboratory techniques and MS, IR, CNMR and PNMR spectral analysis.

- **Integrity Policy** – Please note that each student should be aware that the integrity policy serves two purposes. The first is to clarify the expectations regarding application of the Honor Code to CHEM courses in general and this laboratory in particular. The second is to inform the Honor Board that you knew or should have known about the proper conduct required of you in the event of a perceived violation.

- **Grade Policy** – The course grade will be comprised of the following critically evaluated elements of your performance:
 - Lab Reports (45%)
 - Quizzes (5%)
 - Student Deportment (10%) – two parts (see later on syllabus)
 - Laboratory Notebook (5%)

<table>
<thead>
<tr>
<th>Section</th>
<th>CRN</th>
<th>Day</th>
<th>Room</th>
<th>Start Time</th>
<th>Instructor</th>
<th>Contact</th>
<th>Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>HONS 293L 01 & 02</td>
<td>11979 & 11980</td>
<td>M</td>
<td>SSMB 105</td>
<td>12 PM & 3:30 PM</td>
<td>Brooke A. Van Horn, PhD</td>
<td>vanhornba@cofc.edu</td>
<td>104</td>
</tr>
<tr>
<td>CHEM 232L 01, 02, 03</td>
<td>10326, 10327, 10328</td>
<td>W & R</td>
<td>SSMB 105</td>
<td>W 3:30 PM, W 7:00PM, R 1:40 PM</td>
<td>Richard A. Himes, PhD</td>
<td>himesra@cofc.edu</td>
<td>110</td>
</tr>
</tbody>
</table>
- Midterm Exam (10%)
- Laboratory Final (25%)

- **Grade Scale** - 100-93 (A); 92-90 (A-); 89-87 (B+); 86-83 (B); 82-80 (B-); 79-77 (C+); 76-73 (C); 72-70 (C-); 69-67 (D+); 66-63 (D); 62-60 (D-); 59-0 (F)

- **Electronic Device Policy** – **No electronic devices will be allowed for the final examination.** You should review your ability to make estimates and for making simple addition, subtraction, multiplication and long division calculations. Your instructor will set a section specific policy for use of electronic devices during labs or quizzes. Even when permitted, the use of your personal electronic device during the lab period is at your own risk. Many of the chemicals used in the organic lab will destroy calculators, cell phones, etc.

- **Midterm and Final Exam Policy** – Both the midterm and final exam will be departmental exams. **No outside materials will be allowed when taking the final exam: no periodic charts, tables of data, calculators, etc.** You will be expected to know what you did and why you did it. The final exam will also contain a lab practical portion, worth 20% of the final exam grade. The written part of the final exam will be a multiple-choice exam. The final exam will be given in the last laboratory period of the semester. More details will be announced later in the semester.

- **Deportment Grade** – The deportment grade attributed to individual daily conduct, including the way a student leaves the hood and under cabinet storage bins at the end of each lab period will be determined as deemed appropriate by your instructor. In addition, each student will be assigned to perform at least one post lab inspection and general clean-up of the common areas, using the Organic Laboratory Safety & Readiness Inspection Report (see lab manual). If the next lab section, or stockroom manager or a course instructor reports that the general lab is unfit for use and that the posted Safety & Readiness Report does not account for the deficiency, then the students who conducted the posted Safety & Readiness Report will receive a grade between 50 and 0 zero for that effort, to be determined by the instructor of the section. Otherwise, that portion of the Deportment grade will be 100.

- CHEM 232 (or HONS 293) is a co-requisite for CHEM 232L (or HONS 293L). If you are repeating the lab (or lecture) you do not need to repeat the co-requisite course if previously passed.

- **Final Grades:** FERPA (The Family Educational Rights and Privacy Act) prevents instructors from posting grades and from emailing you or telling you your grade over the phone. You may consult My Charleston to obtain your final grade.

CHEM 232L and HONS 293L Learning Outcomes: The successful student is expected to:

- Identify and interpret the MS fragmentation ions of common organic compounds
- Interpret a 1D \(^1\)H-NMR spectrum including higher level coupling
- Predict IR, MS, and NMR spectra for simple compounds
- Use combined spectral analysis to deduce and justify a structural formula of an organic compound
- Perform organic reactions to isolate and characterize reaction products and perform product purifications