Honors 192 Organic Chemistry I
Spring 2013

INSTRUCTOR: Dr. Justin K. Wyatt
OFFICE: 310 School of Science and Math Building (SSMB)
PHONE: (843) 953-6587
EMAIL: wyattj@cofc.edu - This is the best way to get in touch with me!

LECTURE: MWF 10:00 – 10:50 am (section 01), LCTR Room 344

OFFICE HOURS: M 4-5 pm, T 11-12 pm, F 11:30-12:30 pm, or by appointment.

GRADING POLICY

EXAMS:
Midterm I Friday January 25th
Midterm II Friday February 15th
Midterm III Friday March 22nd
Midterm IV Friday April 12th
ACS Final* Wednesday May 1st (8:00-10:00 am)

*This exam is normalized because it is a standardized exam.
(Similar to the standardized SAT, MCAT, and DAT exams.)

QUIZZES: Every Thursday, that there is no Exam (based on the schedule above), there will be a 10 pt quiz (10 total) that will focus on material from the last quiz or exam. However, all material that has been discussed during the semester is fair game because it all grows on itself.

TOTAL GRADE: Your grade is based on straight points and so each exam is worth 1/6th of your grade (for a total of 500 pts possible out of 600 pts) and your quiz total will also be 1/6th of your grade (for a total of 100 pts possible out of 600 pts). No late or make-up exam or quiz will be given.

The ACS final can replace your lowest midterm exam grade if doing so will improve your average if (and only if): 1. You personally have taken all four midterm exams, and 2. The entire class has a response rate of greater than 75% for the ONLINE COURSE EVALUATIONS.

GRADE ASSIGNMENTS: I do not round grades (ie. a 69.9% is still a 69%...therefore, still a C-).

<table>
<thead>
<tr>
<th>Score Range</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-94</td>
<td>A</td>
</tr>
<tr>
<td>93-90</td>
<td>A-</td>
</tr>
<tr>
<td>89-86</td>
<td>B+</td>
</tr>
<tr>
<td>85-82</td>
<td>B</td>
</tr>
<tr>
<td>81-78</td>
<td>B-</td>
</tr>
<tr>
<td>77-74</td>
<td>C+</td>
</tr>
<tr>
<td>73-70</td>
<td>C</td>
</tr>
<tr>
<td>69-66</td>
<td>C-</td>
</tr>
<tr>
<td>65-62</td>
<td>D</td>
</tr>
<tr>
<td>61 and below</td>
<td>F</td>
</tr>
</tbody>
</table>
CHEATING: If I suspect that you are cheating, I will take you to the honor board and let them decide your fate. *Cheating on even one question is so stupid!* Do you really want to risk your entire career over a few little points? REALLY?

College of Charleston Honor Code and Academic Integrity

Lying, cheating, attempted cheating, and plagiarism are violations of our Honor Code that, when identified, are investigated. Each incident will be examined to determine the degree of deception involved.

Incidents where the instructor determines the student’s actions are related more to a misunderstanding will handled by the instructor. A written intervention designed to help prevent the student from repeating the error will be given to the student. The intervention, submitted by form and signed both by the instructor and the student, will be forwarded to the Dean of Students and placed in the student’s file.

Cases of suspected academic dishonesty will be reported directly by the instructor and/or others having knowledge of the incident to the Dean of Students. A student found responsible by the Honor Board for academic dishonesty will receive a XF in the course, indicating failure of the course due to academic dishonesty. This grade will appear on the student’s transcript for two years after which the student may petition for the X to be expunged. The student may also be placed on disciplinary probation, suspended (temporary removal) or expelled (permanent removal) from the College by the Honor Board.

Students should be aware that unauthorized collaboration--working together without permission--is a form of cheating. Unless the instructor specifies that students can work together on an assignment, quiz and/or test, no collaboration during the completion of the assignment is permitted. Other forms of cheating include possessing or using an unauthorized study aid (which could include accessing information via a cell phone or computer), copying from others’ exams, fabricating data, and giving unauthorized assistance.

Research conducted and/or papers written for other classes cannot be used in whole or in part for any assignment in this class without obtaining prior permission from the instructor.

Students can find the complete Honor Code and all related processes in the *Student Handbook* at http://studentaffairs.cofc.edu/honor-system/studenthandbook/index.php

WHAT DO I EXPECT YOU TO KNOW?!

A. How to draw a Lewis Structure. If you don’t know go back and learn.
B. Along with this I expect that you will learn the functional groups in Table 2.1 on page 58 by Monday January 14th.

COURSE OUTLINE

Chapter 1: A Review of General Chemistry: Electrons, Bonds, and Molecular Properties.
Chapter 2: Molecular Representations.
Chapter 3: Acids and Bases.
Chapter 4: Alkanes and Cycloalkanes.
Chapter 5: Stereoisomerism.
Chapter 6: Chemical Reactivity and Mechanisms.
Chapter 7: Substitution Reactions
Chapter 8: Alkenes Structure and Preparation via Elimination Reactions.
Chapter 9: Addition Reactions of Alkenes.
Chapter 10: Alkynes.
Chapter 11: Radical Reactions.
Chapter 12: Synthesis.
Chapter 13: Alcohols and Phenols.

HELPFUL HINTS

1. Do as many problems as you can from our textbook, other textbooks, and other resources (such as the online Wiley Plus problems that are posted and the LearnSmart that we are trying).
2. Go to SI.
3. Go to Office Hours.
4. Do more problems.
5. Get a tutor if you want one (sooner rather than later).
6. Overall, do problems and get help if you need it.

LEARNING OBJECTIVES

The successful student is expected to:

• Interpret and analyze structural formula and resonance characteristics of common functional groups
• Draw and interpret general features of curved arrow notations that illustrate mechanistic processes for common organic reactions
• Use IUPAC and common nomenclature for alkanes, alkenes, alkynes, alkyl halides and alcohols
• Draw and interpret three dimensional structures for all types of isomers of organic compounds
• Define and use fundamental concepts associated with acid-base, thermodynamic, kinetic and structural theories as they relate to processes associated with organic chemistry
• Evaluate knowledge and principles about organic reactions and reactivities to make reasonable predictions about likely outcomes when presented with related chemistry
• Deduce, design and evaluate retrosynthetic schemes including functional group transformations