Course Info and Policies

Instructor:  Dr. Richard A. Himes  
Office:  110 SSMB (New Science)  
e-mail:  himesra@cofc.edu  
Phone:  (843) 953-3618  
Peer Mentor:  Lea Russell (russelllg@g.cofc.edu)

Office hours:  Subject to change:  T 10:50 am-12:20 pm, R 10:50 am – 12:20 pm. Other days by appointment.
If I’m in my office and the door is open, I’m willing to take questions. If the door is closed, please understand that you may need to come back another time or make an appointment. Dr. Himes is a busy guy! Additional help sessions may be scheduled during the semester.

Lecture:  TR 9:25 – 10:40 AM. 333 JSC (Jewish Studies Center)

Important dates:  Jan. 18: Last day to drop/add  
Mar. 23: Last day to withdraw with a grade of 'W'  
Mar. 5-11: Spring break. No class.  
Apr. 27: Reading day

EXAMS:

Exam 1:  Tuesday, February 7th  
Exam 2:  Thursday, March 16th  
Exam 3:  Thursday, April 13th  
Exam 4:  A take-home exam, due... Dr. Himes hasn't decided yet. Before the final.

FINAL EXAM:  May 4, 8-11 am, 333 JSC


Optional texts:


The textbook package sold at the CofC bookstore includes the solutions manual.

ACS Organic Chemistry Study Guide

Co-requisite:  You must be registered for Chem 231 lab concurrently.

Attendance:  Attendance is strongly encouraged. Unannounced quizzes will be administered in lecture. A missed in-class quiz cannot be made up and will count as a 0. Additionally, material not covered in the textbook may be covered in lecture. You are responsible for material that you miss; office hours will not be used to teach missed topics. Exams:  You are expected to take each exam in class, on the dates listed above. Makeup exams will not be administered.

Disabilities:  If there is a student in this class who has a documented disability and has been approved to receive accommodations through SNAP Services, please feel free to come and discuss this with me during my office hours.
Academic integrity: This course is conducted under the Honor Code of the College of Charleston (http://www.cofc.edu/studentaffairs/HonorBoard?HonorBoard.htm). Review the Department of Chemistry and Biochemistry’s policy on Scientific Integrity (http://www.cofc.edu/~chem/advising/integ.pdf).

Email: Email is considered an official method for communication at the College of Charleston. If students wish to have email redirected from the official College-issued account to another email address (e.g., @gmail.com, @hotmail.com), they may do so, but at their own risk. Having email redirected does not absolve the student from the responsibilities associated with communication sent to his or her College account. The College is not responsible for the handling of email by outside vendors or unofficial servers. Students are expected to check their CoC official email frequently for College related communications. Checking email on a daily basis is recommended. Students are responsible for reading all time-sensitive communications. “I didn’t check my email”, forwarding errors, or email returned to the College with “Mailbox Full” or “User Unknown” are not acceptable excuses for missing official College communications via email. Please check your e-mail frequently and carefully read each e-mail from the instructor.

Course Performance and Evaluation

Grades: Assignment weighting and the grading scale for the course are below. You are responsible for picking up graded assignments, either in class or the instructor’s office. Graded papers cannot be left in public areas nor will grades be distributed by e-mail or over the phone. Please come to office hours if you need to discuss your grade and class performance.

Formula:

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quizzes / Homework: Unannounced (“pop”) or announced quizzes plus group homework.</td>
<td>75 points</td>
</tr>
<tr>
<td>4 Midterm Exams: 3 in-class exams, 200 pts each; 1 take-home, 125 points.</td>
<td>725 points</td>
</tr>
<tr>
<td>Final Exam: Standardized ACS exam.</td>
<td>200 points</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1000 points</td>
</tr>
</tbody>
</table>

If your final exam score is higher than your average midterm exam score, your final exam score will take the place of your lowest midterm score.

Grading Scale:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>92-100%</td>
</tr>
<tr>
<td>A-</td>
<td>90-92%</td>
</tr>
<tr>
<td>B+</td>
<td>88-90%</td>
</tr>
<tr>
<td>B</td>
<td>81-88%</td>
</tr>
<tr>
<td>B-</td>
<td>79-81%</td>
</tr>
<tr>
<td>C+</td>
<td>77-79%</td>
</tr>
<tr>
<td>C</td>
<td>71-77%</td>
</tr>
<tr>
<td>C-</td>
<td>68-71%</td>
</tr>
<tr>
<td>D</td>
<td>63-68%</td>
</tr>
<tr>
<td>F</td>
<td>&lt;63%</td>
</tr>
</tbody>
</table>

Scores will not be rounded. A percentage of 91.99 will remain an A-, for example. Rounding is stressful.

Quizzes/Homework: Quizzes (generally unannounced, or “pop,” quizzes) may be given at the beginning of lecture on certain days. The intention is to make sure that you keep up with course material and practice problems as we cover new material. The difficulty of the material necessitates that you study the topics and work many practice problems daily, throughout the semester, not just the day before an exam. Some quizzes will be announced.

Graded homework assignments may be given, especially in the latter two-thirds of the semester when we cover reactions and mechanisms. These assignments may include challenging problems that require you to apply multiple concepts to solving them. Graded homework will be given as group assignments, to be worked with classmates.
The point value of quizzes and homework will be scaled to total 75 points. If we have a total of fifteen quizzes plus homework assignments, for example, then each would be worth 5 points.

**Practice problems:** Practicing problems is absolutely critical to learning and understanding organic chemistry and, in general, the more practice you SUCCESSFULLY complete, the better your performance in the course. It is recommended that you complete ALL of the textbook problems in each chapter that we cover. Additional recommended problem sets will be distributed or posted on OAKS. You are not required to complete them, HOWEVER – the best way to learn organic chemistry is to continually practice problems! The more you do, the more you learn.

**Exams:** Three midterm exams will be given during regular class meetings on the dates provided above. One take-home exam will be given at the end of the semester. The ACS final can replace your lowest exam grade if doing so will improve your average and if (and only if): 1. You personally have taken all four midterm exams; 2. Your final exam score is higher than your average midterm score; and 3. The entire class has a response rate of greater than 75% for the online course evaluations at the end of the semester. Missed exams may not be made up; your final exam grade will take the place of the zero (0) for one missed exam.

**Final Exam:** A standardized, timed, multiple-choice test prepared by the American Chemical Society. Grades for are curved based on national norms. The prep guide for this exam is available for purchase and at the library.

### Course Learning Outcomes and Topics

**Learning Outcomes:** By the end of this course, students will be able to:
- Demonstrate basic communication skills within organic chemistry for example structure, nomenclature, mechanisms, reaction schemes
- Define and use fundamental concepts associated with physical organic chemistry
- Use foundational skills of organic reactions to predict organic reaction outcomes

**Course Outline:** The following chapters of Carey/Giuliano 10\textsuperscript{th} ed. will be covered in the following order. However, \textit{MATERIAL NOT PRESENT IN THE TEXTBOOK MAY BE COVERED IN LECTURE.}

- Chapter 1: Structure, Acid/Base, etc.
- Chapter 2: Intro to hydrocarbons
- Chapter 3: Conformational analysis
- Chapter 4: Chirality
- Chapter 5: Alcohols/Alkyl halides - Rxn intro
- Chapter 6: Nucleophilic Substitution
- Chapter 7: Eliminations
- Chapter 8: Additions to Alkenes
- Chapter 9: Alkynes
- Chapter 10: Free Radicals
- Chapter 11: Conjugation (Dienes/Allylic, etc.)
- Chapter 12: Arenes/Aromaticity
- Chapter 13: Electrophilic aromatic substitution and nucleophilic aromatic substitution

**NOTE:** Chapter 14.20-14.25 (Spectroscopy (IR and MS)) covers material that will be introduced in lab Experiment III and then applied throughout the lab course. You WILL be responsible for IR and MS once covered in lab, but this material will not be covered further in lecture. Feel free to ask question about spectroscopy in office hours.
Suggestions for Approaching Organic Chemistry

Organic chemistry builds on itself. The topics we cover the first week will be indispensable for understanding those covered the second week, and so on throughout the semester. DO NOT GET BEHIND! You should be devoting several hours of study for each hour of lecture.

First off: READ in advance of the lectures. You will understand more in lecture if you read ahead. You will come up with informative questions to ask if you read ahead. You will be able to spend more time listening in lecture as opposed to trying to write every detail down in your notebook.

The next step will be to WORK PROBLEMS. Lots of them. PRACTICE PRACTICE PRACTICE. You should work ALL of the textbook problems. Working a problem does not mean looking at the question, immediately looking at the solution, and then telling yourself, “Yeah, I can do that.” You need to be able to successfully solve the problems WITHOUT LOOKING AT ANSWERS, on your own, and as efficiently as possible.

Here are the suggestions of the immortal Dr. Wyatt:

“1. Do as many problems as you can from our textbook, other textbooks, and other resources (e.g., online).
2. Go to peer mentor meetings.
3. Go to office hours.
4. Do more problems.
5. Get a tutor if you want one (sooner rather than later).
6. Overall, do problems and get help if you need it.”

Before class: Read and become familiar with the material prior to each class meeting. As you read and prepare prior to class, think of specific questions you may wish to ask in lecture.

During class: Participate! I encourage and expect questions. Questions help me evaluate what you have understood and when I need to be clearer. When preparing for class, jot down potential questions you may want to ask – the more focused and specific, the more you will get out of the answer. (Coming up with a good, focused question is an excellent way to pinpoint what you understand and what you don’t.)

After class: No, really – why aren’t you working more problems??? Go work problems!

ONE FINAL NOTE: Please please please PLEASE come to office hours if you need help! Dr. Himes knows that organic chemistry is a difficult topic and will do his best to help any student and answer any question about the material.