Instructor Schedule and Communication: I want you to ask questions so that you can be successful in this course! Communication with me can occur via multiple platforms, including email, OAKS Virtual Classroom, and the OAKS discussion boards. A few procedures to keep in mind:

Ask Three, Then Me - I receive many emails every week, many from students asking questions that could quickly be answered by reading the syllabus carefully or asking a classmate. Thus, before emailing me, please follow these steps:
1. Consult the class schedule and syllabus.
2. Check OAKS for announcements and instructions, including the chapter-based discussion boards and Course Lounge board.
3. Confer with three classmates.

If you still don’t know the answer to your question, you may email me, especially if it is a personal/private matter not needing the feedback of peers. Following these steps will help me maintain my sanity, which will benefit all of us! I will respond to emails within 24 hours.

Office Hours (physical ones in SSMB 104): M 5-6 PM; W 11 AM -12 PM and W 7-8:30 PM; F 12-1 PM; or with OAKS Virtual Classroom (by appointment or TBA)

Community and Communication within the Course
Participation: Participation in the course is required as 7% of your overall grade. It is very difficult to be successful in organic chemistry without viewing the lectures, where you will be practicing the art of thinking in, translating, and writing/drawing organic chemistry. You are responsible for learning a substantial amount of required material for this course (most of which will be covered both in lecture and in the textbook, but some of which may be in lecture only or in the textbook only.)

To ensure active participation the course, there will be weekly required engagement activities, including discussion thread posts, discussion thread responses, checklist verifications, dropbox submissions, to name a few modes of engagement. Details for each week’s required engagement will be provided throughout the semester – please use the OAKS checklists to make sure you are tuning in to all that is required!

If you do miss material covered on certain days, it is your responsibility to recover the required material, possibly from classmates. Any work/points missed (including exams, regardless of reason) will be given a grade of zero (0) for the final grade.

Additionally, there are discussion boards set up for more “routine” questions, including a Course Lounge (for general questions related to the course that may be answered by your peers or by me as the instructor) and Chapter Specific Questions boards (for content related questions that may more quickly be answered by your peers!) Please use these boards to interact constructively – it is amazing what we can accomplish as a group!

Lastly, be sure to check out the Chemical Fun and Kudos discussion boards to see some of the latest-and-greatest advances in the field we will be studying and support your peers that have hit a milestone, made an awesome grade or improvement, or just generally done something noteworthy.
Class Climate & Netiquette - As stated on page 75 of the Student Handbook: “a college classroom requires a higher level of courtesy than many people exercise in ordinary public space. Everyone in a classroom is there for the purpose of learning, and no one should be able to deprive another person of the chance to learn. Expressions of rudeness and even carelessness degrade the high purpose of learning that should be paramount in a college classroom.” This applies equally to the online classroom. Don’t be a troll!

To maintain a respectful and supportive environment, please uphold these rules of netiquette. Netiquette is network etiquette, the do's and don'ts of online communication.

➢ Be kind and ethical. Be forgiving. Respect disagreement.
➢ Be aware of how your communication may be perceived by others.
 ■ Do not write in ALL CAPS – this is perceived as yelling.
➢ Cite your sources.
➢ Help each other. We are much stronger and more successful as a united and supportive group.

Technical Difficulties/FAQs: If you have questions or problems related to the course, please follow the communication procedures noted above. If you have technical problems, please contact Student Computing Support or Helpdesk using these methods:

☆ Student Computing Support (for questions on campus about computing)
 ➢ 843-953-5457
 ➢ studentcomputingsupport@cofc.edu
 ➢ blogs.cofc.edu/scs

☆ Helpdesk (other on campus services for IT)
 ➢ 843-953-3375
 ➢ helpdesk@cofc.edu
 ➢ it.cofc.edu/help/helpdesk

☆ McGraw-Hill Connect – Customer Support (for Connect online assignments and e-text resources)
 ➢ (800) 331 5094
 ➢ https://mhedu.force.com/CXG/s/

☆ Zoom (for individual meetings or meetings with small groups)
 ➢ https://support.zoom.us/hc/en-us/articles/206175806-Top-Questions
 ➢ https://support.zoom.us/hc/en-us

It is important to resolve technical problems swiftly, so do not delay getting help when required. Computer failure or browser issues, problems with McGraw-Hill Connect (not due to a system-wide documented error) or unavailability do not constitute an excuse for not completing assignments.

OAKS: Course materials, including the syllabus, any extra problem sets, study guides, handouts, etc. will be made available through the OAKS system accessed via MyCharleston. Additional work will be provided through the McGraw-Hill Connect online system.

Co-Requisite and Drop Policy: CHEM 232L Laboratory is a pre- or co-requisite of this lecture course. If you drop either course, then you must also drop the other.

Course Technical Goals: This second semester course is part of a two-semester sequence and is taught to introduce the structure, properties, and reactivity of the class of chemical compounds encompassed by the descriptor “organic.” Included in this classification are biomolecules, many synthetic drug molecules,
plastics/polymers, and industrial solvents, among many others. The knowledge of the basic concepts and learned study skills from the first semester course, CHEM 231/HONS 192, are the foundation from which you will build upon in this second semester course, CHEM 232, and will prepare you for success in advanced chemistry, biochemistry, and chemical/molecular biology courses when approached with similar diligence. Please see the learning outcomes at the end of this document for more specific details.

IMPORTANT: This course moves very quickly and the material presented/learned last week is the foundation for the material being covered this week. Be prepared to study every day (approximately 3 h for every hour of lecture to complete reading, lecture review, and assigned problems) and come to review sessions and office hours with your questions. Working problems should be the BULK of your study time.

As a student in CHEM 232, the burden of the learning is on you; as the instructor, I am here to present and explain the course material to the best of my ability and to help you master the material by providing examples and problem sets to practice applying the concepts. As you will hear from upperclassmen and faculty alike, organic chemistry is learned through SOLVING PROBLEMS not by memorizing reagents or mechanisms.

This new online format should encourage more exchanges between students than you might be accustomed to in a physical classroom. You will be expected to do the same sorts of activities that you do in a regular class such as drawing and writing organic chemistry, guided by feedback from me, and frequent discussions, facilitated by the OAKS discussion boards.

We will be covering the following textbook topics in CHEM 232 during our online/video lectures:

- Chapter 13 – Electrophilic and Nucleophilic Aromatic Substitution (AS REVIEW/PRACTICE/CATCH-UP)
- Chapter 14 – Spectroscopy
- Chapter 15 – Organometallic Compounds (tentative end Exam #1)
- Chapter 16 – Alcohols, Diols, Thiols
- Chapter 17 – Ethers, Epoxides, and Sulfides
- Chapter 18 – Aldehydes and Ketones: Nucleophilic Addition to the Carbonyl Group (tentative end Exam #2)
- Chapter 19 – Carboxylic Acids
- Chapter 20 – Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution (tentative end Exam #3)
- Chapter 21 – Enols and Enolates
- Chapter 22 – Amines (tentative end Exam #4)

Grading Policy: Earning the minimum percentage to achieve an “A” necessitates strong study skills and diligence in working the suggested practice problems which will prepare you to perform well on the evaluation tools in the course including: (a) four in-class exams, (b) online and written homework, (c) engagement in the course online through discussion and other participation avenues, (d) one proctored ACS standardized final exam and (e) participation in the course (OAKS discussions, other assigned “interactions” with peers or content.)

Two methods to determine the final grade percentage will be considered (as follows) with the final grade being assigned from the one giving the higher score.

<table>
<thead>
<tr>
<th>Method I:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Four (4) Exams</td>
<td>each 15 % of overall grade</td>
</tr>
<tr>
<td>One (1) Final Exam</td>
<td>20 % of overall grade</td>
</tr>
<tr>
<td>LS Prep (cannot be dropped)</td>
<td>3 % of overall grade</td>
</tr>
<tr>
<td>Homework (one drop per category)</td>
<td>10 % of overall grade</td>
</tr>
<tr>
<td>Participation</td>
<td>7 % of overall grade</td>
</tr>
<tr>
<td>Total Grade</td>
<td>100 %</td>
</tr>
</tbody>
</table>
Method II: (Beneficial for a missed or poor exam)
Three (3) Exams – highest each 15% of overall grade 45%
One (1) Final Exam 35% of overall grade 35%
LS Prep (cannot be dropped) 3% of overall grade 3%
Homework (one drop per category) 10% of overall grade 10%
Participation 7% of overall grade 7%
Total Grade 100%

Additionally, any concerns or questions regarding the correctness of grades or individual graded work are to be addressed by appointment, not in common office hours for privacy reasons. Any requests for the addition of points back onto graded work will require (1) the original graded work, with no additional marks after returned to the student, and (2) a formal typed document describing in detail where the mistake in grading was made and why (in chemical terms) the graded work demonstrates the correct answer. Lastly, requests to regrade work will only be considered if the above guidelines are followed and if the potential benefit of the regrade would result in at least 2 points on an exam (usually worth 100 points.)

Exams: Four exams will be used to evaluate your level of understanding of the material presented in lecture, the readings in the text, and the practice problems assigned. The exact exam format will vary from test to test, but will contain multiple choice questions, short answer/ranking problems, drawing of mechanisms, and at least one larger "bring-it-all-together" free response problem. The exams will be given in class on the following dates:

<table>
<thead>
<tr>
<th>Wednesday, Jan 30th</th>
<th>Wednesday, February 27th</th>
<th>Wednesday, March 27th</th>
<th>Wednesday, April 17th</th>
</tr>
</thead>
</table>

Homework: There are a few important levels of “homework” that you will be asked to complete.

(1) Each chapter will have one or more “pre-lecture” LearnSmart modules. These online guided uses of SmartBook on McGraw-Hill’s Connect platform are to gear your reading/studying for the online video lectures that will follow. Completion of these modules will be weighted as 25% of your Homework grade.

(2) Each chapter will be assigned a set of GRADED online Connect homework to be completed by the due date noted within each Connect assignment. These assignments are NOT accepted past the due date. Completion of these Connect assignments will be weighted as 25% of your Homework grade.

(3) Additionally, both small and larger bring-it-together written homework sets will be distributed online. These extra problems sets will target higher level problem solving and can be done cooperatively, so long as the names of each collaborator are acknowledged. Each student must turn in a written set of worked problems for these written assignments to be uploaded electronically as a PDF in a labeled OAKS dropbox. These are GRADED for effort as 0 or 100 (however I reserve the right to change that if effort drops.) Completion of these written assignments will be weighted as 50% of your Homework grade. Solutions to these assignments will only be made available after assignments are due. You are welcome to discuss them among yourselves or to ask questions of me or your peers prior to the due date. I will not however “give” you the answers! 😊

(4) I will provide a list of suggested problems from the textbook for you to work – these should be done by hand and posed to me when you do not understand them from the solutions manual. These suggested problems are NOT GRADED but can be used in building exam problems – they are very worth doing!

NOTE: One homework from each of the first three categories may be dropped. The total points accumulated from the online and written assignments will be used to calculate a total homework percentage and weighted as 10% of your total course grade.
Final Exam: The final exam will be an ACS-standardized multiple-choice final given as appointments with a proctor near your location. Details regarding this final and taking it will follow in the semester.

Grading Scale: The grading scale below reflects the grade percentages necessary to achieve each letter grade:

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Grade</th>
<th>Percentage</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-93</td>
<td>A</td>
<td>76-73</td>
<td>C</td>
</tr>
<tr>
<td>92-90</td>
<td>A-</td>
<td>72-70</td>
<td>C-</td>
</tr>
<tr>
<td>89-87</td>
<td>B+</td>
<td>69-67</td>
<td>D+</td>
</tr>
<tr>
<td>86-83</td>
<td>B</td>
<td>66-63</td>
<td>D</td>
</tr>
<tr>
<td>82-80</td>
<td>B-</td>
<td>62-60</td>
<td>D-</td>
</tr>
<tr>
<td>79-77</td>
<td>C+</td>
<td><60</td>
<td>F</td>
</tr>
</tbody>
</table>

Final grades will be posted online through MyCharleston as FERPA (The Family Educational Rights and Privacy Act) restricts instructor ability to give these grades by posting, e-mailing, or over the phone.

Honor Code Policy: Students are expected to be aware of and conform to the standards of the College of Charleston Student Honor Code Policy (linked from http://studentaffairs.cofc.edu/honor-system/index.php). In addition, students in this course are also expected to be conscious of and conform to the standards provided by the Department of Chemistry and Biochemistry Policy on Scientific Integrity (link on the Department main page and provided in laboratory class).

Students with Disabilities: Please contact me and stop by my office hours (as early as possible in the course) if you have been approved to receive accommodations through SNAP Services. Consult the Student Guide to SNAP Services for more information: http://disabilityservices.cofc.edu/documents/student-guide.pdf

Essential Student Learning Outcomes for CHEM 231 and CHEM 231L:

The successful student is expected to (Lecture):

- Demonstrate basic communication skills within organic chemistry for example structure, nomenclature, mechanisms, reaction schemes
- Define and use fundamental concepts associated with physical organic chemistry
- Using foundational skills of organic reactions to predict organic reaction outcomes

The successful student is expected to (Laboratory):

- Demonstrate awareness of and compliance with safety standards within the organic chemistry laboratory
- Apply and perform the basic processes used in organic chemistry
- Succinctly summarize experimental findings

Essential Student Learning Outcomes for CHEM 232:

The successful student is expected to:

- Demonstrate intermediate communication skills within organic chemistry for example structure, nomenclature, mechanisms, reaction schemes
- Draw and interpret mechanisms for reactions of increased sophistication
- Integrate knowledge and principles of organic reactions and reactivities to make reasonable predictions about likely outcomes when presented with related chemistry