Chemistry 230-01 Introduction to Organic Chemistry Fall 2020

Instructor: Lisa Barker
Email address: barkerla@cofc.edu
Office hours: Mondays 8-9pm on Zoom or by email
Course information: Wednesdays 6-7:40pm online (Zoom) CRN 13066

Welcome to Introduction to Organic Chemistry! This course is meant to review and expand upon topics from general and organic chemistry that are crucial for your success in organic chemistry. This course alone, while hopefully helpful, is not enough to ensure your success in organic. Please take this opportunity as a chance to learn how to study for organic, and as a good foundation for acquiring more advanced knowledge that will be essential in the future.

If you have questions about the material or are struggling, please contact me. I want you to succeed, but I cannot help you if you do not let me know that there is a problem. I look forward to our semester together!

Course description: An introductory course in chemistry designed to help students who intend to take organic chemistry. Please note that, while this class is offered online, you should expect to invest a similar amount of time as with a traditional course. Online does not equal easy! You will need to be self-motivated to succeed in this class.

Course Co- and Pre-requisites:
Pre-requisites: Chem 111, Chem 111L, and Math 111 or 120 or equivalent
Co-requisite or pre-requisite: You may take this course if you are currently enrolled in Chem 112 and 112L. You may also take this course if you have dropped Chem 231 but wish to stay enrolled in 231L. If you drop or withdraw from this class, you will also be withdrawn from 231L.

Student Learning Outcomes

- Draw, name, and interconvert between different types of structural representations of organic molecules
- Draw and interpret three dimensional structures for different isomers
- Draw and interpret general features of curved arrow notations
- Understand and use fundamental concepts and trends in acidity

Required Materials:

- A computer with reliable internet access, speakers, and a microphone
- A way to scan or take a photo of your work and quickly upload it to an OAKS discussion or dropbox

Recommended Materials:

- Textbook: Chemistry: Atoms First, third edition, by Julia Burge and Jason Overby (can use electronic version) OR
- Model kit or ChemBioDraw (available on the department website here)
Important Dates:
- Friday, Oct. 16th Last day to Drop/Add Express II courses
- Wednesday, Nov. 18th Last day to withdraw from Express II courses
- Wednesday, Nov. 25th Thanksgiving break, no class
- Wednesday, Dec. 9th Final exam 8:30-10:30pm

Class Schedule / Course Topics: Please note that this schedule is tentative and is subject to change!

Module 1: Oct. 14th Lewis structures and resonance
Module 2: Oct. 21st Brief geometry and hybridization review; Molecular representations
Module 3: Oct. 28th Nomenclature; Isomers
Module 4: Nov. 4th Isomers continued; Stereoisomers
Module 5: Nov. 11th Enantiomers and R/S notation; Curved arrow notation
Module 6: Nov. 18th Reaction mechanisms; Polarity and acidity
Nov. 25th No class, Thanksgiving break
Module 7: Dec. 2nd Trends in polarity and acidity continued, t.b.a.
Wednesday, Dec. 9th 8:30-10:30pm Final Exam

General due dates:
- Wednesdays, 6-7:40pm Synchronous lecture is held on Zoom. Attendance is required.
- Saturdays Worksheet key is released
- Mondays 8-9pm Office hour on Zoom
- Tuesdays OAKS quiz is available

Grading Scale:
- A 93.0-100
- A- 90.0-92.9
- B+ 87.0-89.9
- B 83.0-86.9
- B- 80.0-82.9
- C+ 77.0-79.9
- C 73.0-76.9
- C- 70.0-72.9
- D+ 67.0-69.9
- D 63.0-66.9
- D- 60.0-62.9
- F <60

Course Grade:
- 35% Final
- 35% Quizzes
- 30% Participation / Homework

OAKS: This class will be run using Zoom and the OAKS learning platform, which can be accessed through MyCharleston. All Zoom links, worksheets, quizzes, and deadlines will be on OAKS. You are expected to log into OAKS each week to actively participate in the class. It is your responsibility to be aware of all materials and deadlines on OAKS. Please be aware that I do have the ability to check your activity and progress on OAKS. Office hours will be held on Zoom. The lecture will be held synchronously on Zoom as well.

Participation / Homework: This class is meant to be highly interactive. You are expected to contribute to our discussions by asking questions and volunteering answers. You’ll also be expected to work constructively in groups and present solutions for various problems to your small group or the class during our time together. Doing the homework will be essential to your contribution to the class and your participation grade so you can ask effective questions.
There will also be weekly discussion boards available for any questions you may have about the problem sets or solutions.

Quizzes and Exams:
Although I encourage you to work in groups for the homework problems, all quizzes and exams must be done alone, without outside resources, including cell phones. All quizzes and exams will be administered through OAKS. You will be given a periodic table. Some questions may require you to write the answer, take a picture and upload it to OAKS. **You must be sure that the picture is of good enough quality for me to grade.** If this becomes an issue, you will receive a zero for any affected questions. (I also need to be able to read your handwriting!)

Quizzes: There will be a short OAKS quiz that is due at the end of each module/before the next class. It will be timed, and it will auto-submit at the deadline, so be sure you are keeping track of the timer. **Quizzes submitted after the deadline will receive a score of zero.**

Final exam: 8:30-10:30pm on Dec. 9th. The final exam is cumulative for the entire course and will be administered through OAKS. Any request to change a final exam administration time needs to be processed officially by filling out the “Change of Final Exam” form, but please contact me first.

Academic Honesty: While I encourage you to study together, academic misconduct, cheating, and plagiarism will not be tolerated. If you participate in academic misconduct, you will receive a zero for the assignment. You will also be reported to the dean, and you may be given a failing grade in the class. Academic misconduct is defined in the handbook. You may not copy, allow another person to copy or otherwise knowingly assist them in a disallowed manner, plagiarize, use disallowed sources of information (cheat sheet, cell phone, external websites), or falsify data, among possible offenses. Using a calculator to store equations or text is also cheating. Use of a wireless communication device, such as a phone, during an exam is a violation of the honor code. **Attempting to collaborate on an online exam or quiz is also an example of academic misconduct.** Please see the school’s honor policy in the handbook for more details.

Deadlines/ Due dates: Deadlines are strictly enforced! There is no credit for late work. Please don’t wait until the last minute to complete an assignment. **Computer trouble and internet issues are not accepted as excuses for late work.** It would be prudent for you to have a back-up plan in case of issues (library, etc.). You also may find it helpful to turn on notifications in OAKS. To do so, click on your user account at the top right of the screen, then “Notifications”. You can then select the sorts of automated reminders you would like to receive. Please contact me if you have an official College-related absence or extreme extenuating circumstances (ie death of a family member, hospitalization, etc.)

Technical support: If there are issues with course content, please let me know. If you are experiencing difficulty with OAKS or similar issues, please contact Student Computing Support. A general website is [here](#) or help.cofc.edu or you can call 843-943-8000 or email studentcomputingsupport@cofc.edu. OAKS tutorials can also be found [here](#) and [here](#).

Center for Disability Services/ SNAP Students Needing Access Parity: If you are approved for accommodations by SNAP, please let me know as soon as possible. You are responsible for contacting me at least one week in advance of any accommodation needed. If you have a documented disability that you need accommodation for in this class, please contact SNAP at 843-953-1431 to arrange.
Other Class Policies:

Attendance: Because of the nature of this class, attendance is mandatory. I will take attendance every class period. Please be on time. **If you have more than two absences, you may receive a failing grade.** It is important that if you will be absent, you let me know ahead of time and with as much warning as possible—email provides a time stamp! Please note that obtaining an Absence Memo does not mean that an absence is excused; it merely documents the absence.

Courtesy: This class should be a positive learning experience for everyone. Be considerate and respectful in your phrasing. Remember that nuances of tone are lost online. Also do not use all caps, as it is like SHOUTING. It is okay to disagree with each other, but it should be a part of a constructive discussion, not a dismissal of each other’s work. For clarity’s sake, please limit the use of abbreviations, and write in a professional manner. If you would prefer that I address you by a different name, please let me know.

Successful studying: The best way to succeed in chemistry is by practicing lots of problems. There is no substitute for working problems. Don’t wait until the last minute! You can’t cram for a chemistry exam.

A course website will be maintained on OAKS with worksheets, worksheet keys, and other information. It is your responsibility to be aware of resources on OAKS and have the appropriate materials available for class.

Communication: You may contact me by email or through the discussion boards. You can expect a response within 24 hours, or slightly more over the weekend. If I do not respond within 24 hours, please resend, as it is probably in my junk folder. Please post all non-private questions to the discussion boards, as it is likely that a classmate has a similar question. For personal questions, please use email. If you email me with a general question, I may ask you to post it in the boards before I answer it. **Please check the discussion boards for your question before contacting me.** Perhaps it has already been answered! I encourage you, as students, to help each other with questions.

Please notify me of all important issues via email, even if you have already talked to me about it! I will send out emails to the whole class containing important information about class materials, due dates, upcoming assignments, etc. **It is important that you check your email frequently.**

As always, if you have any questions or special circumstances arise, please let me know as soon as possible. It is easier to solve a problem that I know about ahead of time.

This syllabus is subject to change with appropriate notice.
CHEM 230 Content Correlation Guide

<table>
<thead>
<tr>
<th>Topic</th>
<th>Burdge/Overby (3e)</th>
<th>Carey/Giuliano (10e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis structures</td>
<td>6.1, 6.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Formal charge</td>
<td>6.4</td>
<td>1.5</td>
</tr>
<tr>
<td>Resonance</td>
<td>6.5</td>
<td>1.7 – 1.8</td>
</tr>
<tr>
<td>Hybridization</td>
<td>7.5 – 7.6</td>
<td>2.6 – 2.9</td>
</tr>
<tr>
<td>Geometries</td>
<td>7.1</td>
<td>1.9</td>
</tr>
<tr>
<td>Molecular representations</td>
<td>23.3</td>
<td>Chapter 2</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>5.6, 23.2</td>
<td>esp. 2.11-2.19</td>
</tr>
<tr>
<td>Isomers</td>
<td>23.4</td>
<td>1.6, Chapter 4</td>
</tr>
<tr>
<td>Chirality</td>
<td>23.4</td>
<td>Chapter 4</td>
</tr>
<tr>
<td>Reaction mechanisms</td>
<td>19.7</td>
<td>1.7, 1.11</td>
</tr>
<tr>
<td>Curved arrow notation</td>
<td>23.5</td>
<td>1.7, 1.11</td>
</tr>
<tr>
<td>Polarity</td>
<td>6.2, 7.2</td>
<td>1.4, 1.10</td>
</tr>
<tr>
<td>Acidity</td>
<td>16.1 – 16.5</td>
<td>1.12 – 1.15</td>
</tr>
</tbody>
</table>